Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).

Identifieur interne : 001653 ( Main/Exploration ); précédent : 001652; suivant : 001654

Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).

Auteurs : Mabel T. Wong [Canada] ; Weijun Wang [Canada] ; Michael Lacourt [Canada] ; Marie Couturier [Canada] ; Elizabeth A. Edwards [Canada] ; Emma R. Master [Canada]

Source :

RBID : pubmed:27446004

Abstract

Strategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy. In this study, lignocellulose-degrading microorganisms from the digestive systems of Canadian beaver (Castor canadensis) and North American moose (Alces americanus) were enriched under methanogenic conditions for over 3 years using various wood-derived substrates, including (i) cellulose (C), (ii) cellulose + lignosulphonate (CL), (iii) cellulose + tannic acid (CT), and (iv) poplar hydrolysate (PH). Substantial improvement in the conversion of amended organic substrates into biogas was observed in both beaver dropping and moose rumen enrichment cultures over the enrichment phases (up to 0.36-0.68 ml biogas/mg COD added), except for enrichments amended with tannic acid where conversion was approximately 0.15 ml biogas/mg COD added. Multiplex-pyrosequencing of 16S rRNA genes revealed systematic shifts in the population of Firmicutes, Bacteroidetes, Chlorobi, Spirochaetes, Chloroflexi, and Elusimicrobia in response to the enrichment. These shifts were predominantly substrate driven, not inoculum driven, as revealed by both UPGMA clustering pattern and OTU distribution. Additionally, the relative abundance of multiple OTUs from poorly defined taxonomic lineages increased from less than 1% to 25-50% in microcosms amended with lignocellulosic substrates, including OTUs from classes SJA-28, Endomicrobia, orders Bacteroidales, OPB54, and family Lachnospiraceae. This study provides the first direct comparison of shifts in microbial communities that occurred in different environmental samples in response to multiple relevant lignocellulosic carbon sources, and demonstrates the potential of enrichment to increase the abundance of key lignocellulolytic microorganisms and encoded activities.

DOI: 10.3389/fmicb.2016.00961
PubMed: 27446004
PubMed Central: PMC4914502


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).</title>
<author>
<name sortKey="Wong, Mabel T" sort="Wong, Mabel T" uniqKey="Wong M" first="Mabel T" last="Wong">Mabel T. Wong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weijun" sort="Wang, Weijun" uniqKey="Wang W" first="Weijun" last="Wang">Weijun Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lacourt, Michael" sort="Lacourt, Michael" uniqKey="Lacourt M" first="Michael" last="Lacourt">Michael Lacourt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Marie" sort="Couturier, Marie" uniqKey="Couturier M" first="Marie" last="Couturier">Marie Couturier</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Edwards, Elizabeth A" sort="Edwards, Elizabeth A" uniqKey="Edwards E" first="Elizabeth A" last="Edwards">Elizabeth A. Edwards</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27446004</idno>
<idno type="pmid">27446004</idno>
<idno type="doi">10.3389/fmicb.2016.00961</idno>
<idno type="pmc">PMC4914502</idno>
<idno type="wicri:Area/Main/Corpus">001699</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001699</idno>
<idno type="wicri:Area/Main/Curation">001699</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001699</idno>
<idno type="wicri:Area/Main/Exploration">001699</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).</title>
<author>
<name sortKey="Wong, Mabel T" sort="Wong, Mabel T" uniqKey="Wong M" first="Mabel T" last="Wong">Mabel T. Wong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weijun" sort="Wang, Weijun" uniqKey="Wang W" first="Weijun" last="Wang">Weijun Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lacourt, Michael" sort="Lacourt, Michael" uniqKey="Lacourt M" first="Michael" last="Lacourt">Michael Lacourt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Marie" sort="Couturier, Marie" uniqKey="Couturier M" first="Marie" last="Couturier">Marie Couturier</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Edwards, Elizabeth A" sort="Edwards, Elizabeth A" uniqKey="Edwards E" first="Elizabeth A" last="Edwards">Elizabeth A. Edwards</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON</wicri:regionArea>
<orgName type="university">Université de Toronto</orgName>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Strategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy. In this study, lignocellulose-degrading microorganisms from the digestive systems of Canadian beaver (Castor canadensis) and North American moose (Alces americanus) were enriched under methanogenic conditions for over 3 years using various wood-derived substrates, including (i) cellulose (C), (ii) cellulose + lignosulphonate (CL), (iii) cellulose + tannic acid (CT), and (iv) poplar hydrolysate (PH). Substantial improvement in the conversion of amended organic substrates into biogas was observed in both beaver dropping and moose rumen enrichment cultures over the enrichment phases (up to 0.36-0.68 ml biogas/mg COD added), except for enrichments amended with tannic acid where conversion was approximately 0.15 ml biogas/mg COD added. Multiplex-pyrosequencing of 16S rRNA genes revealed systematic shifts in the population of Firmicutes, Bacteroidetes, Chlorobi, Spirochaetes, Chloroflexi, and Elusimicrobia in response to the enrichment. These shifts were predominantly substrate driven, not inoculum driven, as revealed by both UPGMA clustering pattern and OTU distribution. Additionally, the relative abundance of multiple OTUs from poorly defined taxonomic lineages increased from less than 1% to 25-50% in microcosms amended with lignocellulosic substrates, including OTUs from classes SJA-28, Endomicrobia, orders Bacteroidales, OPB54, and family Lachnospiraceae. This study provides the first direct comparison of shifts in microbial communities that occurred in different environmental samples in response to multiple relevant lignocellulosic carbon sources, and demonstrates the potential of enrichment to increase the abundance of key lignocellulolytic microorganisms and encoded activities. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27446004</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).</ArticleTitle>
<Pagination>
<MedlinePgn>961</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2016.00961</ELocationID>
<Abstract>
<AbstractText>Strategic enrichment of microcosms derived from wood foragers can facilitate the discovery of key microbes that produce enzymes for the bioconversion of plant fiber (i.e., lignocellulose) into valuable chemicals and energy. In this study, lignocellulose-degrading microorganisms from the digestive systems of Canadian beaver (Castor canadensis) and North American moose (Alces americanus) were enriched under methanogenic conditions for over 3 years using various wood-derived substrates, including (i) cellulose (C), (ii) cellulose + lignosulphonate (CL), (iii) cellulose + tannic acid (CT), and (iv) poplar hydrolysate (PH). Substantial improvement in the conversion of amended organic substrates into biogas was observed in both beaver dropping and moose rumen enrichment cultures over the enrichment phases (up to 0.36-0.68 ml biogas/mg COD added), except for enrichments amended with tannic acid where conversion was approximately 0.15 ml biogas/mg COD added. Multiplex-pyrosequencing of 16S rRNA genes revealed systematic shifts in the population of Firmicutes, Bacteroidetes, Chlorobi, Spirochaetes, Chloroflexi, and Elusimicrobia in response to the enrichment. These shifts were predominantly substrate driven, not inoculum driven, as revealed by both UPGMA clustering pattern and OTU distribution. Additionally, the relative abundance of multiple OTUs from poorly defined taxonomic lineages increased from less than 1% to 25-50% in microcosms amended with lignocellulosic substrates, including OTUs from classes SJA-28, Endomicrobia, orders Bacteroidales, OPB54, and family Lachnospiraceae. This study provides the first direct comparison of shifts in microbial communities that occurred in different environmental samples in response to multiple relevant lignocellulosic carbon sources, and demonstrates the potential of enrichment to increase the abundance of key lignocellulolytic microorganisms and encoded activities. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Mabel T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Weijun</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lacourt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Edwards</LastName>
<ForeName>Elizabeth A</ForeName>
<Initials>EA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Master</LastName>
<ForeName>Emma R</ForeName>
<Initials>ER</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">16S rRNA pyrosequencing</Keyword>
<Keyword MajorTopicYN="N">beaver dropping</Keyword>
<Keyword MajorTopicYN="N">digestive microflora</Keyword>
<Keyword MajorTopicYN="N">lignocellulose degradation</Keyword>
<Keyword MajorTopicYN="N">microbial community composition</Keyword>
<Keyword MajorTopicYN="N">microbial convergence</Keyword>
<Keyword MajorTopicYN="N">microbial enrichment</Keyword>
<Keyword MajorTopicYN="N">moose rumen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27446004</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2016.00961</ArticleId>
<ArticleId IdType="pmc">PMC4914502</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(9):2992-3001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jan;60(1):313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8117084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2010 Oct 26;1(3):371-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14793-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 28;6(1):e14622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21307956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1948-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2009 Nov;92(11):5512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19841214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Conserv Physiol. 2014 Mar 21;2(1):cou009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27293630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2012 Sep 19;12:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2014 Aug;68(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24595908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38571</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22701672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Apr 11;10(5):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 04;8(9):e73827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jun 12;7:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24955113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2012 Jun;23(3):364-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e40430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1987 Feb;53(2):254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3105454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012 Feb 21;3(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22354956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Mar;64(1):125-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12908085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 11;284(37):24673-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2014 Mar;6(3):703-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24625961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Mar 19;6:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009 Oct 15;2:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19832972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Mar 1;31(5):647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25355788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jan 28;331(6016):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21273488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Nov;13(11):3024-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2013 Apr;65(3):531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23529653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 22;450(7169):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18033299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2014 Nov;98(21):9095-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Ontario">
<name sortKey="Wong, Mabel T" sort="Wong, Mabel T" uniqKey="Wong M" first="Mabel T" last="Wong">Mabel T. Wong</name>
</region>
<name sortKey="Couturier, Marie" sort="Couturier, Marie" uniqKey="Couturier M" first="Marie" last="Couturier">Marie Couturier</name>
<name sortKey="Edwards, Elizabeth A" sort="Edwards, Elizabeth A" uniqKey="Edwards E" first="Elizabeth A" last="Edwards">Elizabeth A. Edwards</name>
<name sortKey="Lacourt, Michael" sort="Lacourt, Michael" uniqKey="Lacourt M" first="Michael" last="Lacourt">Michael Lacourt</name>
<name sortKey="Master, Emma R" sort="Master, Emma R" uniqKey="Master E" first="Emma R" last="Master">Emma R. Master</name>
<name sortKey="Wang, Weijun" sort="Wang, Weijun" uniqKey="Wang W" first="Weijun" last="Wang">Weijun Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001653 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001653 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27446004
   |texte=   Substrate-Driven Convergence of the Microbial Community in Lignocellulose-Amended Enrichments of Gut Microflora from the Canadian Beaver (Castor canadensis) and North American Moose (Alces americanus).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27446004" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020